
Load-time relocation of shared libraries
(https://eli.thegreenplace.net/2011/08/25/load-
time-relocation-of-shared-libraries)

 August 25, 2011 at 14:47 Tags Assembly (https://eli.thegreenplace.net/tag/assembly) , C & C++
(https://eli.thegreenplace.net/tag/c-c) , Linkers and loaders (https://eli.thegreenplace.net/tag/linkers-
and-loaders) , Linux (https://eli.thegreenplace.net/tag/linux)

This article's aim is to explain how a modern operating system makes it possible to use shared libraries with
load-time relocation. It focuses on the Linux OS running on 32-bit x86, but the general principles apply to
other OSes and CPUs as well.

Note that shared libraries have many names - shared libraries, shared objects, dynamic shared objects
(DSOs), dynamically linked libraries (DLLs - if you're coming from a Windows background). For the sake of
consistency, I will try to just use the name "shared library" throughout this article.

Loading executables
Linux, similarly to other OSes with virtual memory support, loads executables to a fixed memory address. If
we examine the ELF header of some random executable, we'll see an Entry point address:

$ readelf -h /usr/bin/uptime
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 [...] some header fields
 Entry point address: 0x8048470
 [...] some header fields

This is placed by the linker to tell the OS where to start executing the executable's code [1]. And indeed if
we then load the executable with GDB and examine the address 0x8048470 , we'll see the first instructions
of the executable's .text segment there.

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 1/15

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries
https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries
https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries
https://eli.thegreenplace.net/tag/assembly
https://eli.thegreenplace.net/tag/c-c
https://eli.thegreenplace.net/tag/c-c
https://eli.thegreenplace.net/tag/linkers-and-loaders
https://eli.thegreenplace.net/tag/linkers-and-loaders
https://eli.thegreenplace.net/tag/linux

What this means is that the linker, when linking the executable, can fully resolve all internal symbol
references (to functions and data) to fixed and final locations. The linker does some relocations of its own
[2], but eventually the output it produces contains no additional relocations.

Or does it? Note that I emphasized the word internal in the previous paragraph. As long as the executable
needs no shared libraries [3], it needs no relocations. But if it does use shared libraries (as do the vast
majority of Linux applications), symbols taken from these shared libraries need to be relocated, because of
how shared libraries are loaded.

Loading shared libraries
Unlike executables, when shared libraries are being built, the linker can't assume a known load address for
their code. The reason for this is simple. Each program can use any number of shared libraries, and there's
simply no way to know in advance where any given shared library will be loaded in the process's virtual
memory. Many solutions were invented for this problem over the years, but in this article I will just focus on
the ones currently used by Linux.

But first, let's briefly examine the problem. Here's some sample C code [4] which I compile into a shared
library:

int myglob = 42;

int ml_func(int a, int b)
{
 myglob += a;
 return b + myglob;
}

Note how ml_func references myglob a few times. When translated to x86 assembly, this will involve a
mov instruction to pull the value of myglob from its location in memory into a register. mov requires an
absolute address - so how does the linker know which address to place in it? The answer is - it doesn't. As I
mentioned above, shared libraries have no pre-defined load address - it will be decided at runtime.

In Linux, the dynamic loader [5] is a piece of code responsible for preparing programs for running. One of its
tasks is to load shared libraries from disk into memory, when the running executable requests them. When a
shared library is loaded into memory, it is then adjusted for its newly determined load location. It is the job of
the dynamic loader to solve the problem presented in the previous paragraph.

There are two main approaches to solve this problem in Linux ELF shared libraries:

1. Load-time relocation
2. Position independent code (PIC)

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 2/15

Although PIC is the more common and nowadays-recommended solution, in this article I will focus on load-
time relocation. Eventually I plan to cover both approaches and write a separate article on PIC, and I think
starting with load-time relocation will make PIC easier to explain later. (Update 03.11.2011: the article about
PIC (https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/) was
published)

Linking the shared library for load-time relocation
To create a shared library that has to be relocated at load-time, I'll compile it without the -fPIC flag (which
would otherwise trigger PIC generation):

gcc -g -c ml_main.c -o ml_mainreloc.o
gcc -shared -o libmlreloc.so ml_mainreloc.o

The first interesting thing to see is the entry point of libmlreloc.so :

$ readelf -h libmlreloc.so
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 [...] some header fields
 Entry point address: 0x3b0
 [...] some header fields

For simplicity, the linker just links the shared object for address 0x0 (the .text section starting at 0x3b0),
knowing that the loader will move it anyway. Keep this fact in mind - it will be useful later in the article.

Now let's look at the disassembly of the shared library, focusing on ml_func :

$ objdump -d -Mintel libmlreloc.so

libmlreloc.so: file format elf32-i386

[...] skipping stuff

0000046c <ml_func>:
 46c: 55 push ebp
 46d: 89 e5 mov ebp,esp
 46f: a1 00 00 00 00 mov eax,ds:0x0
 474: 03 45 08 add eax,DWORD PTR [ebp+0x8]
 477: a3 00 00 00 00 mov ds:0x0,eax
 47c: a1 00 00 00 00 mov eax,ds:0x0
 481: 03 45 0c add eax,DWORD PTR [ebp+0xc]
 484: 5d pop ebp
 485: c3 ret

[...] skipping stuff

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 3/15

https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

After the first two instructions which are part of the prologue [6], we see the compiled version of
myglob += a [7]. The value of myglob is taken from memory into eax , incremented by a (which is at
ebp+0x8) and then placed back into memory.

But wait, the mov takes myglob? Why? It appears that the actual operand of mov is just 0x0 [8]. What
gives? This is how relocations work. The linker places some provisional pre-defined value (0x0 in this case)
into the instruction stream, and then creates a special relocation entry pointing to this place. Let's examine
the relocation entries for this shared library:

$ readelf -r libmlreloc.so

Relocation section '.rel.dyn' at offset 0x2fc contains 7 entries:
 Offset Info Type Sym.Value Sym. Name
00002008 00000008 R_386_RELATIVE
00000470 00000401 R_386_32 0000200C myglob
00000478 00000401 R_386_32 0000200C myglob
0000047d 00000401 R_386_32 0000200C myglob
[...] skipping stuff

The rel.dyn section of ELF is reserved for dynamic (load-time) relocations, to be consumed by the
dynamic loader. There are 3 relocation entries for myglob in the section showed above, since there are 3
references to myglob in the disassembly. Let's decipher the first one.

It says: go to offset 0x470 in this object (shared library), and apply relocation of type R_386_32 to it for
symbol myglob . If we consult the ELF spec we see that relocation type R_386_32 means: take the value at
the offset specified in the entry, add the address of the symbol to it, and place it back into the offset.

What do we have at offset 0x470 in the object? Recall this instruction from the disassembly of ml_func :

46f: a1 00 00 00 00 mov eax,ds:0x0

a1 encodes the mov instruction, so its operand starts at the next address which is 0x470 . This is the 0x0
we see in the disassembly. So back to the relocation entry, we now see it says: add the address of myglob
to the operand of that mov instruction. In other words it tells the dynamic loader - once you perform actual
address assignment, put the real address of myglob into 0x470 , thus replacing the operand of mov by the
correct symbol value. Neat, huh?

Note also the "Sym. value" column in the relocation section, which contains 0x200C for myglob . This is the
offset of myglob in the virtual memory image of the shared library (which, recall, the linker assumes is just
loaded at 0x0). This value can also be examined by looking at the symbol table of the library, for example
with nm :

$ nm libmlreloc.so
[...] skipping stuff
0000200c D myglob

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 4/15

This output also provides the offset of myglob inside the library. D means the symbol is in the initialized
data section (.data).

Load-time relocation in action
To see the load-time relocation in action, I will use our shared library from a simple driver executable. When
running this executable, the OS will load the shared library and relocate it appropriately.

Curiously, due to the address space layout randomization feature
(http://en.wikipedia.org/wiki/Address_space_layout_randomization) which is enabled in Linux, relocation is
relatively difficult to follow, because every time I run the executable, the libmlreloc.so shared library gets
placed in a different virtual memory address [9].

This is a rather weak deterrent, however. There is a way to make sense in it all. But first, let's talk about the
segments our shared library consists of:

$ readelf --segments libmlreloc.so

Elf file type is DYN (Shared object file)
Entry point 0x3b0
There are 6 program headers, starting at offset 52

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x000000 0x00000000 0x00000000 0x004e8 0x004e8 R E 0x1000
 LOAD 0x000f04 0x00001f04 0x00001f04 0x0010c 0x00114 RW 0x1000
 DYNAMIC 0x000f18 0x00001f18 0x00001f18 0x000d0 0x000d0 RW 0x4
 NOTE 0x0000f4 0x000000f4 0x000000f4 0x00024 0x00024 R 0x4
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4
 GNU_RELRO 0x000f04 0x00001f04 0x00001f04 0x000fc 0x000fc R 0x1

 Section to Segment mapping:
 Segment Sections...
 00 .note.gnu.build-id .hash .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rel
 01 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
 02 .dynamic
 03 .note.gnu.build-id
 04
 05 .ctors .dtors .jcr .dynamic .got

To follow the myglob symbol, we're interested in the second segment listed here. Note a couple of things:

In the section to segment mapping in the bottom, segment 01 is said to contain the .data section,
which is the home of myglob
The VirtAddr column specifies that the second segment starts at 0x1f04 and has size 0x10c ,
meaning that it extends until 0x2010 and thus contains myglob which is at 0x200C .

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 5/15

http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Address_space_layout_randomization

Now let's use a nice tool Linux gives us to examine the load-time linking process - the dl_iterate_phdr
function (http://linux.die.net/man/3/dl_iterate_phdr), which allows an application to inquire at runtime which
shared libraries it has loaded, and more importantly - take a peek at their program headers.

So I'm going to write the following code into driver.c :

#define _GNU_SOURCE
#include <link.h>
#include <stdlib.h>
#include <stdio.h>

static int header_handler(struct dl_phdr_info* info, size_t size, void* data)
{
 printf("name=%s (%d segments) address=%p\n",
 info->dlpi_name, info->dlpi_phnum, (void*)info->dlpi_addr);
 for (int j = 0; j < info->dlpi_phnum; j++) {
 printf("\t\t header %2d: address=%10p\n", j,
 (void*) (info->dlpi_addr + info->dlpi_phdr[j].p_vaddr));
 printf("\t\t\t type=%u, flags=0x%X\n",
 info->dlpi_phdr[j].p_type, info->dlpi_phdr[j].p_flags);
 }
 printf("\n");
 return 0;
}

extern int ml_func(int, int);

int main(int argc, const char* argv[])
{
 dl_iterate_phdr(header_handler, NULL);

 int t = ml_func(argc, argc);
 return t;
}

header_handler implements the callback for dl_iterate_phdr . It will get called for all libraries and report
their names and load addresses, along with all their segments. It also invokes ml_func , which is taken from
the libmlreloc.so shared library.

To compile and link this driver with our shared library, run:

gcc -g -c driver.c -o driver.o
gcc -o driver driver.o -L. -lmlreloc

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 6/15

http://linux.die.net/man/3/dl_iterate_phdr
http://linux.die.net/man/3/dl_iterate_phdr

Running the driver stand-alone we get the information, but for each run the addresses are different. So what
I'm going to do is run it under gdb [10], see what it says, and then use gdb to further query the process's
memory space:

 $ gdb -q driver
 Reading symbols from driver...done.
 (gdb) b driver.c:31
 Breakpoint 1 at 0x804869e: file driver.c, line 31.
 (gdb) r
 Starting program: driver
 [...] skipping output
 name=./libmlreloc.so (6 segments) address=0x12e000
 header 0: address= 0x12e000
 type=1, flags=0x5
 header 1: address= 0x12ff04
 type=1, flags=0x6
 header 2: address= 0x12ff18
 type=2, flags=0x6
 header 3: address= 0x12e0f4
 type=4, flags=0x4
 header 4: address= 0x12e000
 type=1685382481, flags=0x6
 header 5: address= 0x12ff04
 type=1685382482, flags=0x4

[...] skipping output
 Breakpoint 1, main (argc=1, argv=0xbffff3d4) at driver.c:31
 31 }
 (gdb)

Since driver reports all the libraries it loads (even implicitly, like libc or the dynamic loader itself), the
output is lengthy and I will just focus on the report about libmlreloc.so . Note that the 6 segments are the
same segments reported by readelf , but this time relocated into their final memory locations.

Let's do some math. The output says libmlreloc.so was placed in virtual address 0x12e000 . We're
interested in the second segment, which as we've seen in readelf is at ofset 0x1f04 . Indeed, we see in
the output it was loaded to address 0x12ff04 . And since myglob is at offset 0x200c in the file, we'd expect
it to now be at address 0x13000c .

So, let's ask GDB:

(gdb) p &myglob
$1 = (int *) 0x13000c

Excellent! But what about the code of ml_func which refers to myglob? Let's ask GDB again:

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 7/15

(gdb) set disassembly-flavor intel
(gdb) disas ml_func
Dump of assembler code for function ml_func:
 0x0012e46c <+0>: push ebp
 0x0012e46d <+1>: mov ebp,esp
 0x0012e46f <+3>: mov eax,ds:0x13000c
 0x0012e474 <+8>: add eax,DWORD PTR [ebp+0x8]
 0x0012e477 <+11>: mov ds:0x13000c,eax
 0x0012e47c <+16>: mov eax,ds:0x13000c
 0x0012e481 <+21>: add eax,DWORD PTR [ebp+0xc]
 0x0012e484 <+24>: pop ebp
 0x0012e485 <+25>: ret
End of assembler dump.

As expected, the real address of myglob was placed in all the mov instructions referring to it, just as the
relocation entries specified.

Relocating function calls
So far this article demonstrated relocation of data references - using the global variable myglob as an
example. Another thing that needs to be relocated is code references - in other words, function calls. This
section is a brief guide on how this gets done. The pace is much faster than in the rest of this article, since I
can now assume the reader understands what relocation is all about.

Without further ado, let's get to it. I've modified the code of the shared library to be the following:

int myglob = 42;

int ml_util_func(int a)
{
 return a + 1;
}

int ml_func(int a, int b)
{
 int c = b + ml_util_func(a);
 myglob += c;
 return b + myglob;
}

ml_util_func was added and it's being used by ml_func . Here's the disassembly of ml_func in the
linked shared library:

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 8/15

000004a7 <ml_func>:
 4a7: 55 push ebp
 4a8: 89 e5 mov ebp,esp
 4aa: 83 ec 14 sub esp,0x14
 4ad: 8b 45 08 mov eax,DWORD PTR [ebp+0x8]
 4b0: 89 04 24 mov DWORD PTR [esp],eax
 4b3: e8 fc ff ff ff call 4b4 <ml_func+0xd>
 4b8: 03 45 0c add eax,DWORD PTR [ebp+0xc]
 4bb: 89 45 fc mov DWORD PTR [ebp-0x4],eax
 4be: a1 00 00 00 00 mov eax,ds:0x0
 4c3: 03 45 fc add eax,DWORD PTR [ebp-0x4]
 4c6: a3 00 00 00 00 mov ds:0x0,eax
 4cb: a1 00 00 00 00 mov eax,ds:0x0
 4d0: 03 45 0c add eax,DWORD PTR [ebp+0xc]
 4d3: c9 leave
 4d4: c3 ret

What's interesting here is the instruction at address 0x4b3 - it's the call to ml_util_func . Let's dissect it:

e8 is the opcode for call . The argument of this call is the offset relative to the next instruction. In the
disassembly above, this argument is 0xfffffffc , or simply -4 . So the call currently points to itself. This
clearly isn't right - but let's not forget about relocation. Here's what the relocation section of the shared
library looks like now:

$ readelf -r libmlreloc.so

Relocation section '.rel.dyn' at offset 0x324 contains 8 entries:
 Offset Info Type Sym.Value Sym. Name
00002008 00000008 R_386_RELATIVE
000004b4 00000502 R_386_PC32 0000049c ml_util_func
000004bf 00000401 R_386_32 0000200c myglob
000004c7 00000401 R_386_32 0000200c myglob
000004cc 00000401 R_386_32 0000200c myglob
[...] skipping stuff

If we compare it to the previous invocation of readelf -r , we'll notice a new entry added for
ml_util_func . This entry points at address 0x4b4 which is the argument of the call instruction, and its
type is R_386_PC32 . This relocation type is more complicated than R_386_32 , but not by much.

It means the following: take the value at the offset specified in the entry, add the address of the symbol to it,
subtract the address of the offset itself, and place it back into the word at the offset. Recall that this
relocation is done at load-time, when the final load addresses of the symbol and the relocated offset itself
are already known. These final addresses participate in the computation.

What does this do? Basically, it's a relative relocation, taking its location into account and thus suitable for
arguments of instructions with relative addressing (which the e8 call is). I promise it will become clearer
once we get to the real numbers.

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 9/15

I'm now going to build the driver code and run it under GDB again, to see this relocation in action. Here's the
GDB session, followed by explanations:

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 10/15

 $ gdb -q driver
 Reading symbols from driver...done.
 (gdb) b driver.c:31
 Breakpoint 1 at 0x804869e: file driver.c, line 31.
 (gdb) r
 Starting program: driver
 [...] skipping output
 name=./libmlreloc.so (6 segments) address=0x12e000
 header 0: address= 0x12e000
 type=1, flags=0x5
 header 1: address= 0x12ff04
 type=1, flags=0x6
 header 2: address= 0x12ff18
 type=2, flags=0x6
 header 3: address= 0x12e0f4
 type=4, flags=0x4
 header 4: address= 0x12e000
 type=1685382481, flags=0x6
 header 5: address= 0x12ff04
 type=1685382482, flags=0x4

[...] skipping output
Breakpoint 1, main (argc=1, argv=0xbffff3d4) at driver.c:31
31 }
(gdb) set disassembly-flavor intel
(gdb) disas ml_util_func
Dump of assembler code for function ml_util_func:
 0x0012e49c <+0>: push ebp
 0x0012e49d <+1>: mov ebp,esp
 0x0012e49f <+3>: mov eax,DWORD PTR [ebp+0x8]
 0x0012e4a2 <+6>: add eax,0x1
 0x0012e4a5 <+9>: pop ebp
 0x0012e4a6 <+10>: ret
End of assembler dump.
(gdb) disas /r ml_func
Dump of assembler code for function ml_func:
 0x0012e4a7 <+0>: 55 push ebp
 0x0012e4a8 <+1>: 89 e5 mov ebp,esp
 0x0012e4aa <+3>: 83 ec 14 sub esp,0x14
 0x0012e4ad <+6>: 8b 45 08 mov eax,DWORD PTR [ebp+0x8]
 0x0012e4b0 <+9>: 89 04 24 mov DWORD PTR [esp],eax
 0x0012e4b3 <+12>: e8 e4 ff ff ff call 0x12e49c <ml_util_func>
 0x0012e4b8 <+17>: 03 45 0c add eax,DWORD PTR [ebp+0xc]
 0x0012e4bb <+20>: 89 45 fc mov DWORD PTR [ebp-0x4],eax
 0x0012e4be <+23>: a1 0c 00 13 00 mov eax,ds:0x13000c
 0x0012e4c3 <+28>: 03 45 fc add eax,DWORD PTR [ebp-0x4]
 0x0012e4c6 <+31>: a3 0c 00 13 00 mov ds:0x13000c,eax
 0x0012e4cb <+36>: a1 0c 00 13 00 mov eax,ds:0x13000c
 0x0012e4d0 <+41>: 03 45 0c add eax,DWORD PTR [ebp+0xc]
 0x0012e4d3 <+44>: c9 leave
 0x0012e4d4 <+45>: c3 ret

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 11/15

End of assembler dump.
(gdb)

The important parts here are:

1. In the printout from driver we see that the first segment (the code segment) of libmlreloc.so has
been mapped to 0x12e000 [11]

2. ml_util_func was loaded to address 0x0012e49c
3. The address of the relocated offset is 0x0012e4b4
4. The call in ml_func to ml_util_func was patched to place 0xffffffe4 in the argument (I

disassembled ml_func with the /r flag to show raw hex in addition to disassembly), which is
interpreted as the correct offset to ml_util_func .

Obviously we're most interested in how (4) was done. Again, it's time for some math. Interpreting the
R_386_PC32 relocation entry mentioned above, we have:

Take the value at the offset specified in the entry (0xfffffffc), add the address of the symbol to it
(0x0012e49c), subtract the address of the offset itself (0x0012e4b4), and place it back into the word at the
offset. Everything is done assuming 32-bit 2-s complement, of course. The result is 0xffffffe4 , as
expected.

Extra credit: Why was the call relocation needed?
This is a "bonus" section that discusses some peculiarities of the implementation of shared library loading in
Linux. If all you wanted was to understand how relocations are done, you can safely skip it.

When trying to understand the call relocation of ml_util_func , I must admit I scratched my head for some
time. Recall that the argument of call is a relative offset. Surely the offset between the call and
ml_util_func itself doesn't change when the library is loaded - they both are in the code segment which
gets moved as one whole chunk. So why is the relocation needed at all?

Here's a small experiment to try: go back to the code of the shared library, add static to the declaration of
ml_util_func . Re-compile and look at the output of readelf -r again.

Done? Anyway, I will reveal the outcome - the relocation is gone! Examine the disassembly of ml_func -
there's now a correct offset placed as the argument of call - no relocation required. What's going on?

When tying global symbol references to their actual definitions, the dynamic loader has some rules about
the order in which shared libraries are searched. The user can also influence this order by setting the
LD_PRELOAD environment variable.

There are too many details to cover here, so if you're really interested you'll have to take a look at the ELF
standard, the dynamic loader man page and do some Googling. In short, however, when ml_util_func is
global, it may be overridden in the executable or another shared library, so when linking our shared library,
the linker can't just assume the offset is known and hard-code it [12]. It makes all references to global

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 12/15

symbols relocatable in order to allow the dynamic loader to decide how to resolve them. This is why
declaring the function static makes a difference - since it's no longer global or exported, the linker can
hard-code its offset in the code.

Extra credit #2: Referencing shared library data from the executable
Again, this is a bonus section that discusses an advanced topic. It can be skipped safely if you're tired of
this stuff.

In the example above, myglob was only used internally in the shared library. What happens if we reference
it from the program (driver.c)? After all, myglob is a global variable and thus visible externally.

Let's modify driver.c to the following (note I've removed the segment iteration code):

#include <stdio.h>

extern int ml_func(int, int);
extern int myglob;

int main(int argc, const char* argv[])
{
 printf("addr myglob = %p\n", (void*)&myglob);
 int t = ml_func(argc, argc);
 return t;
}

It now prints the address of myglob . The output is:

addr myglob = 0x804a018

Wait, something doesn't compute here. Isn't myglob in the shared library's address space? 0x804xxxx
looks like the program's address space. What's going on?

Recall that the program/executable is not relocatable, and thus its data addresses have to bound at link
time. Therefore, the linker has to create a copy of the variable in the program's address space, and the
dynamic loader will use that as the relocation address. This is similar to the discussion in the previous
section - in a sense, myglob in the main program overrides the one in the shared library, and according to
the global symbol lookup rules, it's being used instead. If we examine ml_func in GDB, we'll see the correct
reference made to myglob :

0x0012e48e <+23>: a1 18 a0 04 08 mov eax,ds:0x804a018

This makes sense because a R_386_32 relocation for myglob still exists in libmlreloc.so , and the
dynamic loader makes it point to the correct place where myglob now lives.

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 13/15

This is all great, but something is missing. myglob is initialized in the shared library (to 42) - how does this
initialization value get to the address space of the program? It turns out there's a special relocation entry
that the linker builds into the program (so far we've only been examining relocation entries in the shared
library):

$ readelf -r driver

Relocation section '.rel.dyn' at offset 0x3c0 contains 2 entries:
 Offset Info Type Sym.Value Sym. Name
08049ff0 00000206 R_386_GLOB_DAT 00000000 __gmon_start__
0804a018 00000605 R_386_COPY 0804a018 myglob
[...] skipping stuff

Note the R_386_COPY relocation for myglob . It simply means: copy the value from the symbol's address
into this offset. The dynamic loader performs this when it loads the shared library. How does it know how
much to copy? The symbol table section contains the size of each symbol; for example the size for myglob
in the .symtab section of libmlreloc.so is 4.

I think this is a pretty cool example that shows how the process of executable linking and loading is
orchestrated together. The linker puts special instructions in the output for the dynamic loader to consume
and execute.

Conclusion
Load-time relocation is one of the methods used in Linux (and other OSes) to resolve internal data and code
references in shared libraries when loading them into memory. These days, position independent code
(PIC) is a more popular approach, and some modern systems (such as x86-64) no longer support load-time
relocation.

Still, I decided to write an article on load-time relocation for two reasons. First, load-time relocation has a
couple of advantages over PIC on some systems, especially in terms of performance. Second, load-time
relocation is IMHO simpler to understand without prior knowledge, which will make PIC easier to explain in
the future. (Update 03.11.2011: the article about PIC (https://eli.thegreenplace.net/2011/11/03/position-
independent-code-pic-in-shared-libraries/) was published)

Regardless of the motivation, I hope this article has helped to shed some light on the magic going behind
the scenes of linking and loading shared libraries in a modern OS.

[1] For some more information about this entry point, see the section "Digression – process addresses and
entry point" of this article (https://eli.thegreenplace.net/2011/01/27/how-debuggers-work-part-2-
breakpoints/).

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 14/15

https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/
https://eli.thegreenplace.net/2011/01/27/how-debuggers-work-part-2-breakpoints/
https://eli.thegreenplace.net/2011/01/27/how-debuggers-work-part-2-breakpoints/

[2] Link-time relocation happens in the process of combining multiple object files into an executable (or
shared library). It involves quite a lot of relocations to resolve symbol references between the object
files. Link-time relocation is a more complex topic than load-time relocation, and I won't cover it in this
article.

[3] This can be made possible by compiling all your libraries into static libraries (with ar combining object
files instead gcc -shared), and providing the -static flag to gcc when linking the executable - to
avoid linkage with the shared version of libc .

[4] ml simply stands for "my library". Also, the code itself is absolutely non-sensical and only used for
purposes of demonstration.

[5] Also called "dynamic linker". It's a shared object itself (though it can also run as an executable), residing
at /lib/ld-linux.so.2 (the last number is the SO version and may be different).

[6] If you're not familiar with how x86 structures its stack frames, this would be a good time to read this
article (https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/).

[7] You can provide the -l flag to objdump to add C source lines into the disassembly, making it clearer
what gets compiled to what. I've omitted it here to make the output shorter.

[8] I'm looking at the left-hand side of the output of objdump , where the raw memory bytes are.
a1 00 00 00 00 means mov to eax with operand 0x0 , which is interpreted by the disassembler as
ds:0x0 .

[9] So ldd invoked on the executable will report a different load address for the shared library each time it's
run.

[10] Experienced readers will probably note that I could ask GDB about i shared to get the load-address
of the shared library. However, i shared only mentions the load location of the whole library (or, even
more accurately, its entry point), and I was interested in the segments.

[11] What, 0x12e000 again? Didn't I just talk about load-address randomization? It turns out the dynamic
loader can be manipulated to turn this off, for purposes of debugging. This is exactly what GDB is
doing.

[12] Unless it's passed the -Bsymbolic flag. Read all about it in the man page of ld .

For comments, please send me an email (mailto:eliben@gmail.com).

© 2003-2025 Eli Bendersky Back to
top

2/7/25, 1:21 PM Load-time relocation of shared libraries - Eli Bendersky's website

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries/#id20 15/15

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/
https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/
mailto:eliben@gmail.com
mailto:eliben@gmail.com

